

Journal of Alloys and Compounds 271-273 (1998) 444-447

Magnetic structures of the ternary stannide $U_2(Ni_{0.70}Pd_{0.30})_2Sn$

D. Laffargue^{a,b}, F. Bourée^{b,*}, B. Chevalier^a, T. Roisnel^b, S. Bordère^a

^aInstitut de Chimie de la Matière Condensée de Bordeaux, ICMCB-CNRS (UPR 9048), Université de Bordeaux I, Avenue du Dr A. Schweitzer, 33608 Pessac, France

^bLaboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif sur Yvette, France

Abstract

The Néel temperature T_N in the tetragonal (P4/mbm space group) antiferromagnetic $U_2(Ni_{1-x}Pd_x)_2Sn$ solid solution exhibits a minimum ($T_N = 12(1)$ K) at $x \approx 0.30-0.35$; the end values being respectively equal to $T_N = 25$ K (x=0) and $T_N = 42$ K (x=1). In order to understand this T_N vs. x dependence, we have investigated the $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ stannide by neutron powder diffraction. This alloy exhibits two magnetic transitions, at $T_N = 11.5(5)$ K and $T_{N'} = 8.0(5)$ K. Between $T_{N'}$ and T_N , the magnetic peaks are associated to $\mathbf{k} = (0 \ 0 \ 1/2)$ propagation vector; below $T_{N'}$, two propagation vectors are present, $\mathbf{k} = (0 \ 0 \ 1/2)$ and $\mathbf{k'} = (1/2 \ 1/2 \ 1/2)$, which are associated to different volumes of the sample. We discuss this complex magnetic behaviour, in connection with the U_2Ni_2Sn ($\mathbf{k} = (0 \ 0 \ 1/2)$) and U_2Pd_2Sn ($\mathbf{k''} = (0 \ 0 \ 0)$) magnetic structures. © 1998 Elsevier Science S.A.

Keywords: Ternary stannides; Neutron diffraction; Magnetic structures; Magnetic phase diagram

1. Introduction

properties Recently, the magnetic of the $U_2(Ni_{1-x}Pd_x)_2Sn$ ternary stannides ($0 \le x \le 1$), crystallizing in the tetragonal ordered U₃Si₂-type structure (P4/mbm space group, with U in (4h), (Ni, Pd) in (4g) and Sn in (2a) Wyckoff positions) were investigated [1]. All the compositions order antiferromagnetically, showing an interesting behaviour of the Néel temperature $T_{\rm N}$: $T_{\rm N}$ first decreases from 25 K (x=0) to 12 K (x=0.30-0.35) and then increases up to 42 K (x=1.0). This $T_N = f(x)$ dependence was reproduced on account of an anisotropic RKKY (Ruderman-Kittel-Kasuya-Yosida) model [1], the occurrence of a minimum in $T_{N}(x)$ being associated to a change in magnetic structure, from the U₂Ni₂Sn, $\mathbf{k} = (0.01/2)$ collinear magnetic structure described in Ref. [2] to the U_2Pd_2Sn , $\mathbf{k}'' = (0\,0\,0)$ non-collinear structure [3,4].

In order to prove this calculated magnetic phase, we performed neutron powder diffraction on the $U_2(Ni_{1-x}Pd_x)_2Sn$ system. In this paper, we discuss pre-

liminary results concerning the $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ ternary stannide.

2. Experimental

The U₂(Ni_{0.70}Pd_{0.30})₂Sn sample was prepared by melting stoichiometric amounts of the constituent elements under argon atmosphere. The obtained alloy was then annealed for 1 month at 800°C under vacuum in a quartz crucible. Microprobe analysis and X-ray powder diffraction at T=300 K confirmed that this annealed alloy is single phase and crystallizes in the tetragonal U₃Si₂-type structure, with a=7.379(2) Å and c=3.714(1) Å as unitcell parameters.

Magnetization measurements were carried out in the 2–20 K temperature range using a Superconducting QUantum Interference Device (SQUID) magnetometer.

Neutron diffraction experiments have been performed at the Orphée reactor (Saclay, France), on the G4.1 two-axis diffractometer (800 cell PSD, λ =2.4265 Å). Neutron data were analysed with the Rietveld-type FULLPROF program [5], with scattering neutron lengths from Ref. [6]: $b_{\rm U}$ = 0.8417×10⁻¹² cm, $b_{\rm Ni}$ =1.03×10⁻¹² cm, $b_{\rm Pd}$ =0.591×

^{*}Corresponding author. Tel.: +33 1 69085449; fax: +33 1 69088261; e-mail: bouree@bali.saclay.cea.fr

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00107-8

 10^{-12} cm and $b_{sn}=0.6225\times10^{-12}$ cm. The U³⁺ magnetic form factor was calculated as $\langle j_0 \rangle$, with $\langle j_0 \rangle$ values from Ref. [7].

3. Results

3.1. Magnetization measurements

Fig. 1 shows the temperature dependence of the magnetization M of $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ below 20 K. Two features are observed in the derivative curve dM/dT=f(T) (inset of Fig. 1): a well-defined maximum occurring at $T_N=12(1)$ K and a 'shoulder' occurring at $T_{N'}=7(1)$ K. These results suggest the existence of two magnetic transitions for this stannide.

3.2. Neutron powder diffraction

At $T=16 \text{ K}>T_{\text{N}}$, the neutron powder diffraction pattern of this stannide reveals reflections associated to nuclear scattering only: the U₂(Ni_{0.70}Pd_{0.30})₂Sn unit-cell parameters are then equal to a=7.3614(5) Å and c=3.7306(3) Å.

Neutron powder diffraction diagrams at low temperatures (Fig. 2) clearly show the existence of new Bragg peaks, connected to 3D antiferromagnetic ordering in $U_2(Ni_{0.70}Pd_{0.30})_2Sn$. The type of antiferromagnetic order is temperature dependent: if all the magnetic Bragg peaks at T=9.8 K can be indexed with the help of a $\mathbf{k}=(0\ 0\ 1/2)$ propagation vector, two propagation vectors are necessary at T=1.5 K: $\mathbf{k}=(0\ 0\ 1/2)$ and $\mathbf{k}'=(1/2\ 1/2\ 1/2)$. From thermal variation of $(1\ 0\ 1/2)$, $(1\ 1\ 1/2)$ and $(2\ 1\ 1/2)$ (Fig. 3), $(1/2\ 1/2\ 1/2)$ and $(3/2\ 1/2\ 1/2)$ (Fig. 4) mag-

Fig. 1. Thermal variation of $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ magnetization (external field H=0.1 T). The inset shows the derivative dM/dT (M, magnetization; T, temperature).

Fig. 2. $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ neutron powder diffraction (λ =2.4265 Å) difference diagrams: $T \cdot (T=16 \text{ K} > T_N)$. Two diagrams are shown at, respectively, $T=9.8 \text{ K} [T_{N'} < T < T_N]$ and $T=1.5 \text{ K} [T < T_N]$.

netic intensities, two magnetic transition temperatures are obtained: $T_{\rm N}$ =11.5(5) K and $T_{\rm N'}$ =8.0(5) K, in excellent agreement with the values obtained from magnetization measurements. Moreover, the **k**=(0 0 1/2) magnetic structures below $T_{\rm N'}$ and between $T_{\rm N'}$ and $T_{\rm N}$ are different, as reflected by the differences in the magnetic (*h* k 1/2) intensity ratios in the intermediate and low temperature ranges (Fig. 3).

3.2.1. Magnetic structure at T=9.8 K

The analysis was done with the help of magnetic group theory for P4/mbm space group, (4h) Wyckoff position and \mathbf{k} =(001/2) propagation vector [2]. In the intermediate temperature range ($T_{N'} < T < T_N$), the best fit

Fig. 3. $U_2(Ni_{0.70}Pd_{0.30})_2Sn$, thermal variation of (1 0 1/2), (1 1 1/2) and (2 1 1/2) magnetic intensities. These magnetic Bragg peaks are associated to \mathbf{k} =(0 0 1/2) wave vector.

Fig. 4. $U_2(Ni_{0.70}Pd_{0.30})_2Sn$, thermal variation of (1/2 1/2 1/2) and (3/2 1/2 1/2) magnetic intensities. These magnetic Bragg peaks are associated to $\mathbf{k}' = (1/2 1/2 1/2)$ wave vector.

between observed and calculated data is obtained for Γ_8 irreducible representation (Fig. 5a), with $M_U = 0.55(5) \mu_B$ at T = 9.8 K (reliability factor $R_M = 9\%$).

3.2.2. Magnetic structure at T=1.5 K

Contrary to what happens in the intermediate temperature range, the \mathbf{k} =(0 0 1/2) magnetic diagram at *T*=1.5 K cannot be accounted for by a unique irreducible representation Γ_i (*i*=1–10): two of them are now present, Γ_8 and Γ_2 . For both of these magnetic arrangements, the U-magnetic moments are parallel to the tetragonal **c**-axis: Γ_2 magnetic structure is characterized by ferromagnetic (001) planes, with the '+-+-' stacking sequence along the **c**-axis (Fig. 5b).

From magnetic group theory applied to the P4/mbm space group, (4h) Wyckoff position and $\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$ propagation vector [8], as many as 10 irreducible representations τ_j (j=1-10) are obtained. In $U_2(Ni_{0.70}Pd_{0.30})_2Sn$, the $\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$ magnetic structure at T=1.5 K is accounted for by τ_{10} : for this arrangement (magnetic unit cell $2a \times 2a \times 2c$), the U-magnetic moments are also parallel to the **c**-axis (Fig. 5c).

Three different types of magnetic ordering are then

Fig. 5. (a) $\mathbf{k} = (0 \ 0 \ 1/2)$, $\Gamma_{\rm s}$ magnetic structure; (b) $\mathbf{k} = (0 \ 0 \ 1/2)$, $\Gamma_{\rm 2}$ magnetic structure; (c) $\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$, τ_{10} magnetic structure; (d) $\mathbf{k}'' = (0 \ 0 \ 0)$, $U_2 Pd_2 Sn$ magnetic structure. For $\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$, an \mathbf{a} -, \mathbf{b} -or \mathbf{c} -translation implies a change in the sign of the U magnetic moment. For $\mathbf{k} = (0 \ 0 \ 1/2)$, only a \mathbf{c} -translation changes this sign. Four crystalline unit-cells, i.e. $2a \times 2a \times c$, are shown in the figures. For all these magnetic structures, except $U_2 Pd_2 Sn$ (d), the U magnetic moments are parallel to the tetragonal \mathbf{c} -axis (open circles, spins 'up'; full circles, spins 'down'). The shortest d_{U-U} distances within (\mathbf{a}, \mathbf{b}) -plane are indicated either by continuous (one distance, d_{1U}) or dashed lines (four distances, d_{4U}).

observed at T=1.5 K for U-magnetic moments. Two assumptions can be made (and neutron powder diffraction is not able to choose between these two): either ' $\mathbf{k}=(0\ 0\ 1/2)$, Γ_8 ', ' $\mathbf{k}=(0\ 0\ 1/2)$, Γ_2 ' and ' $\mathbf{k}'=(1/2\ 1/2\ 1/2)$, τ_{10} ' are all associated to the whole volume of the sample, or each of these magnetic arrangements is associated to a partial volume in the sample. We selected the partial volume assumption, from the criterium of identical magnetic moment values for the four U atoms in the nuclear unit cell. The results of the neutron powder diffraction (T=1.5 K) magnetic data refinement are given in Table 1. At T=1.5 K, the U-magnetic moment is equal to 1.05(10) $\mu_{\rm B}/{\rm U}$, identical to the value obtained at the same temperature for x=0 [2], and far below the 'x=1' value (2.20 $\mu_{\rm B}/{\rm U}$ [3]).

Table 1

 $U_2(Ni_{0.70}Pd_{0.30})_2Sn$ magnetic structures at T=1.5 K: propagation vector (k or k'), magnetic structure type (Γ_i or τ_j), U magnetic moment and volume of the associated magnetic domain

Propagation vector	Magnetic structure	Magnetic moment ($\mu_{\rm B}$)	Volume (%)	Reliability factor, $R_{\rm M}$ (%)	
$\mathbf{k} = (0\ 0\ 1/2)$	Γ_8	$M_{\rm H} = 1.05(10)$	30(5)	2.10	
$\mathbf{k} = (0\ 0\ 1/2)$	Γ_2	$M_{\rm U} = 1.05(10)$	25(5)	5.05	
$\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$	$ au_{10}$	$M_{\rm U} = 1.05(10)$	45(5)	9.35	

These values are obtained from neutron powder diffraction FULLPROF [5] data refinement.

Table 2

	Propagation vector	Magnetic structure	$d_{1\mathrm{U}}$ ($\perp \mathbf{c}$ -axis)	$d_{2U} = c (\ \mathbf{c}\text{-axis})$	$d_{4\mathrm{U}}$ ($\pm \mathbf{c}$ -axis)
U ₂ Ni ₂ Sn	k =(0 0 1/2)	Γ_{10}	F	AF	AF
	$\mathbf{k} = (0 \ 0 \ 1/2)$	Γ_8	F	AF	AF
$U_2(Ni_{0.7}Pd_{0.3})_2Sn$	$\mathbf{k} = (0 \ 0 \ 1/2)$	Γ_2	F	AF	F
	$\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$	$ au_{10}$	AF	AF	2F & 2AF
U_2Pd_2Sn	$\mathbf{k}'' = (0\ 0\ 0)$	Γ'_8	AF	F	_

 $U_2(Ni_{1-x}Pd_x)_2Sn$ alloys, magnetic exchange interactions between nearest U neighbours, at distances d_{1U} , d_{2U} and d_{4U} (the number of such neighbours is indicated by the digit in the index of d_{nU} ; neighbours within (**a**,**b**)-plane, at distances d_{1U} and d_{4U} , are shown in Fig. 5)

F, ferromagnetic; AF, antiferromagnetic.

4. Discussion

Contrary to the end compounds, U_2Ni_2Sn and U_2Pd_2Sn , where only one magnetic transition occurs, two magnetic transition temperatures are obtained for $U_2(Ni_{0.70}Pd_{0.30})_2Sn$: $T_N=11.5(5)$ K and $T_{N'}=8.0(5)$ K.

Let us now compare the magnetic structures in the $U_2(Ni_{1-r}Pd_r)_2Sn$ series: they are known, up to now, for x=0 [2], x=1 [3,4] (Fig. 5d) and x=0.30 (this work). All are antiferromagnetic, but all are different (Table 2, Fig. 5). Let us just recall that the U_2Ni_2Sn magnetic structure $[\mathbf{k} = (0 \ 0 \ 1/2), \ \Gamma_{10}]$ is similar to the $\mathbf{k} = (0 \ 0 \ 1/2), \ \Gamma_{8}$ structure (Fig. 5a), except for the direction of the Umoments, which are either perpendicular (U2Ni2Sn) or parallel $(U_2(Ni_{0.70}Pd_{0.30})_2Sn)$ to the tetragonal **c**-axis. At the other end of the series (i.e. for x=1, U_2Pd_2Sn), the magnetic structure is associated to ' $\mathbf{k}''=(0\ 0\ 0),\ \Gamma'_{s}$ ' [9] and depicted in Fig. 5d. So, for U₂Ni₂Sn and U₂Pd₂Sn, the magnetic interactions between nearest U neighbours (at d_{111} and d_{211} distances, Table 2) are respectively F, AF (U_2Ni_2Sn) and AF, F (U_2Pd_2Sn) , which means an inversion of the sign of interactions ($F \Leftrightarrow AF$) when going from x=0, U₂Ni₂Sn to x=1, U₂Pd₂Sn. Some equilibrium between these competing magnetic interactions is then to be found at intermediate x values. For $U_2(Ni_{1-x}Pd_x)_2Sn$, x=0.30, the 'equilibrium' at low temperature $(T < T_{N'})$ is obtained via different volumes of the same sample, associated to different magnetic structures. For these magnetic structures, the magnetic interactions between U nearest neighbours are either F, AF or AF, AF (Table 2).

The U₂(Ni_{1-x}Pd_x)₂Sn magnetic ground state and $T_N(x)$ value have been accounted for in the frame of an anisotropic RKKY model [1]: for this calculation of magnetic RKKY exchange interaction, not only three (at d_{1U} and d_{2U} distances) or seven (at d_{1U} , d_{2U} and d_{4U} distances) U

neighbours were considered, but about 300, which are included in a sphere of 15 Å radius. It was then shown that the minimum of $T_{\rm N}(x)$ observed at $x \approx 0.30 - 0.35$ in the $U_2(Ni_{1-r}Pd_r)_2Sn$ solid solution was associated to a change of magnetic structure type, from U₂Ni₂Sn to U₂Pd₂Sntype magnetic structure. Let us note that the ' $\mathbf{k} = (0.01/2)$, (U_2Ni_2Sn) Γ_{10} and $k = (0 \ 0 \ 1/2),$ Γ_{s} $(U_2(Ni_{0.70}Pd_{0.30})_2Sn)$ magnetic structures, as they are similar except for the direction of the U magnetic moments, are associated to the same magnetic exchange energy. An extension of this anisotropic RKKY model to the ' $\mathbf{k}' = (1/2 \ 1/2 \ 1/2)$ ' magnetic states, which have not been taken into account in Ref. [1], has to be done now, together with neutron powder diffraction on other compounds in the series $(0.30 \le x \le 1)$, in order to get a deeper insight in the complex $U_2(Ni_{1-x}Pd_x)_2Sn$ magnetic phase diagram.

References

- S. Bordère, S. Buzdin, B. Chevalier, D. Laffargue, J. Etourneau, J. Magn. Magn. Mater. 175 (1997) 263.
- [2] F. Bourée, B. Chevalier, L. Fournès, F. Mirambet, T. Roisnel, V.H. Tran, Z. Zolnierek, J. Magn. Magn. Mater. 138 (1994) 307.
- [3] D. Laffargue, F. Bourée, B. Chevalier, T. Roisnel, P. Gravereau, J. Etourneau, J. Magn. Magn. Mater. 170 (1997) 155.
- [4] A. Purwanto, R.A. Robinson, L. Havela, V. Sechovsky, P. Svoboda, H. Nakotte, K. Prokes, F.R. de Boer, A. Seret, J.M. Winand, J. Rebizant, J.C. Spirlet, Phys. Rev. B 50 (1994) 6792.
- [5] J. Rodriguez-Carvajal, Physica B 192 (1993) 55.
- [6] V.F. Sears, Neutron News 3(3) (1992) 26.
- [7] A.J. Freeman, J.P. Desclaux, J. Magn. Magn. Mater. 12 (1979) 11.
- [8] D. Laffargue, Thèse, Université de Bordeaux I (France), no. 1734, 1997.
- [9] F. Bourée, B. Chevalier, D. Laffargue, T. Roisnel, in: Workshop on Application of Symmetry Analysis to Diffraction Investigations, Krakow, Poland, Extended Abstracts, 1996, pp. 9–14.